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Abstract - Web based applications are increasing in 
importance as consumers use web for wide range of daily 
activities. Testing the web based applications as banking with 
large number of interactions is crucial. Combinatorial 
Interaction testing is a method that generates test suites 
incrementally using cum-variable strength strategy for 
testing. There are some unknown combinations that are 
impossible to occur due to the requirements set to the 
application termed as constraints. There arise practical 
concerns when adding constraints between combinations of 
input domain resulting in combinatorial explosion. This paper 
presents a new algorithm that features the construction of test 
suites to support expressive constraining over the input 
domain using predicates. 
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I.INTRODUCTION 
A combinatorial testing approach is a kind of functional 
testing technique consisting of exhaustively validating all 
combinations of size t of applications input values. It 
requires formal modeling of application features as input 
values. Modeling activities are expensive and time 
consuming. The tester models only the inputs and requires 
that they are sufficiently covered by tests. On the other 
hand unintended interactions between the input parameters 
can lead to incorrect behavior which may not be detected 
by traditional testing. In Particular Combinatorial 
Interaction Testing aims at generating the reduced-size test 
suite which covers all combination of input values with 
constraint support. Predicates and constrained covering 
array is used to generate test suites which forms the basis 
for combinatorial interaction testing. 

II. COVERING ARRAYS

A t-way CIT sample is a mathematical structure called 
covering array [1,2 ]. From the mathematical point of view, 
the problem of generating a minimal set of test suites 
covering all combinations of input values is equivalent to 
finding a covering array of strength t over a heterogeneous 
interaction. Covering arrays [3] are combinatorial 
structures which extend the notion of orthogonal arrays. 
DEFINITION 1. An instance called an orthogonal array, 
OA(t, k, v) where every ordered subset occurs exactly once. 
In this case N is not used because the exact size of the array 
is always vt. 

OAs are tabular arrangement of symbols which satisfy 
certain combinatorial properties. It is the generalization of 

latin squares [4]. If OA Strength = 2 then every 2 columns 
contains all possible pairs of elements. Often OA matching 
the required combinatorial test structures does not exist. 
OAs don’t support constraint among test settings and 
parameters. 

DEFINITION 2. A covering array, CA(N; t, k, v), is an N × 
k array on v symbols with the property that  every N ×t 
sub-array contains all ordered subsets of size t from the v 
symbols at least once. 
An N x k array with the property that in every N x t sub -
array, each t-tuple occurs at least  λ times, where t is the 
strength of the coverage of interactions, k is the number of 
parameters (degree), and g = (g1; g2;…gk) is a vector of 
positive integers defining the number of values for each 
parameter. 

DEFINITION 3. A mixed level covering array, MCA(N; t, 
k, (v1, v2, ..., vk)), is an N × k array on v symbols, where v 
= Pk i=1 vi, with the following properties:  
(1) Each column i (1 ≤ i ≤k) contains only elements from a 
set Si of size vi.  
(2) The rows of each N × t sub-array cover all t-tuples of 
values from the t columns at least 1 time. 
A shorthand notation is used to describe mixed level 
covering arrays [5] by combining equal entries in (vi : i ≤ 1 
≤ k). For example three entries each equal to 2 can be 
written as 23. 

III. CONSTRAINED COVERING ARRAYS

The presence of constraints demands new definition of 
proper CIT sample. Integral to this concept is whether t-set 
is consistent with constraints [6]. 

DEFINITION 4. Given a set of constraints C, a given t-set, 
s, is C-consistent if s is not forbidden by any combination 
of constraints in C. 
This definition permits flexibility in defining the nature of 
constraints and how they combine to forbid combinations. 

DEFINITION 5. A constrained-covering array, denoted 
CCA(N; t, k, v,C), is an N × k array on v symbols with 
constraints C, such that every N × t sub-array contains all 
ordered C-consistent subsets of size t from the v symbols at 
least once. We extend this definition to constrained mixed-
level covering arrays CMCA(N; t, k, (v1, v2, ..., vk),C) in 
the natural way. 
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TABLE 1. SUMMARY OF CONSTRAINT HANDLING IN EXISTING ALGORITHMS/TOOLS 

Algorithm/Tool Tool Category Constraint Handling Re-Implementable 
AETG AETG -  Like Greedy REMODEL PARTIAL 
DDA AETG - Like Greedy SIMPLE YES 
Whitch:CTS Construction EXPAND NO 
Whitch:TOFU Unknown EXPAND NO 
IPO Greedy NONE --- 
Test Cover Construction REMODEL NO 
Sim Annealing Meta Heuristic SIMPLE YES 
PICT AETG - Like Greedy REMODEL PARTIAL 
Constraint Solver Constraint Solving NONE --- 
 
 

IV. CONSTRAINT SUPPORT 
A desired requirement of combinatorial interaction testing 
strategy is the ability to deal with complex constraints 
[7,8]. Although the presence of constraints reduces the size 
of combinatorial test suites it also makes test generation 
more challenging. The general problem of finding minimal 
test suite that satisfies t-wise interaction coverage is NP 
complete. If constraints are added on the input domain 
finding a single test suite that satisfies t-wise interaction 
coverage is NP complete. 
 
There are already a few approaches dealing with constraints 
over the input domain [9, 10]. In order to deal with 
constraints some methods require remodeling the original 
specification. Some algorithms simply ignore constraints to 
post process the test suites, some others delete the 
combination of input that do not satisfy the constraints. The 
summary of constraint handling in the existing 
algorithms/tools is presented in table 1 

 
V. MODEL BY TEST PREDICATES 

Theapproach formalizes combinatorial coverage by logic 
predicates [11, 12]. The preliminary definition of test and 
test suite is as follows. Given m input parameters, each 
ranging in its finite domain, a test is an assignment of 
values to each of the m parameters: p1 = v1, p2 = v2, …,pm = 
vmor <Pi = Vi>. A test suite is a finite set of tests. The size 
of the test suite is the number of tests in it. To formalize 
CIT, express each of the combination of input as logic TPred 
expression.  
For Example :p1 = v1^ p2 = v2where p1 and p2 are two 
inputs or monitored variables of enumeration or boolean 
domain and v1 and v2 are two possible values of p1 and p2 
respectively.  
Similarly, t-wise coverage can be modeled by a set of test 
predicates, each of the type: 
p1 = v1 ^ p2 = v2 ^ : : : ^ pt = vt≡	⋀ ݅ ൌ ௧݅ݒ

ୀଵ  
where p1; p2 : : : pt are t input parameters and v1; v2, … , 
vt are their possible values. The t-wise coverage is 
represented by the set of test predicates that contains every 
possible combination of the t input variables with their 
values. Please note that to reach complete t-wise coverage 
this has to be true for each t-tuple of input parameters of the 
considered application. 
To build the complete set of test predicates required for t-
wise coverage of a model, employ a combinatorial 

enumeration algorithm, which simply takes every possible 
combination of t input variables and it assigns every 
possible value to them. 
 

VI. TEST GENERATION 
The actual test generation [13] consists of finding a test that 
covers a given Tpred i.e., a model for it. As long as 
constraint is not taken into account the Tpred is a 
conjunction of atom of the form v=x and the model is 
trivial where simple algorithm is used. In order to support 
constraints the logical solver tools such as Symbolic 
Analysis Laboratory can better suit the task. The SAL 
Framework combines different tools of abstraction, solving 
and model checkers and used for test generation. 
 
SAL offers a Bounded Model Checkers BMC and 
Symbolic Model Checkers SMC. A BMC transforms the 
model checking problem into a constraint satisfaction 
problem. A SMC uses Binary Decision Diagrams BDD to 
efficiently represent states, interaction relations and 
constraints among them.  
In order to generate a test that covers a given combinatorial 
Tpred, SAL is asked to verify a trap property in the model 
containing monitored variables [14, 15]. The trap property 
states that Tpred is never true or never(Tpred). It enforces 
assignment of values falsifying trap property and satisfying 
Tpred.  The proposed approach is able to deal with temporal 
constraints and able to include state transition and 
interaction information that cannot be represented by SAT 
Solvers. 
 

A) IG-t-CCIT 
 
The IG-t-CCIT is the Incremental Generation of t-way test 
suites with Constrained CIT with Tpred. The basic way to 
generate suitable test suite for t-wise coverage consist of 
executing the test predicate generator to generate predicate 
tree and order the Tpred . Then collect all ordered test 
predicate from the list of candidate set and execute the SAL 
to remove the Tpredone by one until candidate set is empty. 
The SAL generates the test and passes on to Coverage 
Evaluator. The test plus Coverage information is passed on 
to test suite generator which works in two stages namely 
the expansion and contraction or reduction stage and 
provides the list of test suites. 
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Figure 1 : Test Suite Generation Process by IG-t-CCIT Approach 
 

 
B) TpredTree Construction 

The Algorithm for the construction of TpredTree is as given 
in algorithm 1 
 
Algorithm 1 : TpredTree Construction 
 
Input : Monitored Parameters MP,  
List of Constraints C 
Output : Test Predicate Tree T 
 
Begin  
Generate list of tuples based on MP and store in CCA 
X = get first tuple from CCA 
Y= get other tuple from CCA 
While X is not complete TpredTree 
If X and Y can be fused and agree with all constraints C 
Fuse X and Y to form new X 
End if 
Y = get other tuple from CCA 
End While 
Store X in T 
Remove tuples covered by X from CCA 
End 
 

C) Monitoring 
Every time a new test ts is added to the test suite, ts always 
covers as many as ൫௧ ൯t-wise test predicates, where m is the 
number of a system's input parameters and t is the strength 
of the covering array (t > 2 for combinatorial interaction 
testing). Checking which test predicates are covered by ts 
and remove them from the candidates leads to fewer calls 
to the model checker and possibly to smaller test suites. To 
enable monitoring, the tool detects if any additional test 
predicate Tpred in the candidates is covered by ts by 
checking whether ts is a model of Tpred (i.e. it satisfies Tpred) 

or not, and in the positive case it removes Tpred from the 
candidates. Checking if a test is a model for a test predicate 
requires very limited computational effort [16]. This 
activity is performed by the Coverage Evaluator (stage 5 in 
Figure 1), which also computes the expected outputs as 
values for controlled parameters, if any. 
 

D) TpredOrdering 
If monitoring is applied, the order in which the candidate 
test predicates are chosen and processed has a major impact 
on the size of the final test suite[17, 18]. In fact, each time a 
Tpred is selected, a corresponding test case is generated, 
covering also other test predicates, which will be then 
removed from the candidate pool too. In fact, the more the 
candidate pool is reduced, the less the variety of test cases 
will be. Considering test predicates in the same order in 
which they are generated may lead to not optimal test 
suites. For this reason, insert an additional processing stage 
(stage 2 of Figure 1) in which the test predicates are 
ordered according to a user specified policy. 
 

 
Figure 2 : A Schema of Anti-diagonal indexing of combination values 
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 Randomly – Choose the next predicate 
 Order by Novelty – Choose from candidate pool 

according to well defined ordering criterion 
 Anti-diagonal criterion - anti-diagonal criterion, 

which orders the test predicates such that no two 
consecutive Tpred	≡ 1 ൌ 2	݀݊ܽ	1ݒ ൌ  and 		2ݒ
Tpred’ ≡ ′1 ൌ ′2	݀݊ܽ	′1ݒ ൌ 1 where ′2ݒ ൌ
2	1ᇱܽ݊݀ ൌ 1ݒ	݁ݒ݄ܽ	݈݈݅ݓ2ᇱ ൌ 2ݒ	1ᇱܽ݊݀ݒ ൌ
 .2ᇱݒ

 
E) Reduction 

Monitoring can significantly reduce the size of a test suite, 
but a resulting test suite could still contain redundant 
tests[19, 20]. For Example, the last generated test might 
also cover several other test predicates Tpredpreviously 
covered by tests which may become useless. A smallest test 
suite is that in which each test predicate is covered by 
exactly one test case, but this very seldom happens: in most 
cases a test predicate will be covered by many tests creating 
possible redundancies. For this reason the analysis of the 
test suite is useful to further reduce it. 
Test suite reduction (also known as test suite minimization) 
[21] is often applied in the context when one wants to find 
a subset of the tests that still satisfies given test goals. 
 

VII. ADDING CONSTRAINTS 
Addition of constraints over the input is given by 
expressing them as axioms in the specification. In the bank 
mortgaging example, the assumption is that the customers 
has not availed the loan previously then check the type of 
customer and income and credit rating. 
Axiom loan_notavailprev Over Home : (check Type of 
Customer) 
Axiom Type of Cust = employee : (check creditrating 
implies excellent) 
Axiom Type of cust = other : (check Income implies 
repayable) 
To express constraint adopt the language of propositional 
logic with equality. For example the require constraint is 
translated by an implication. Note that also input domains 
must be taken intoaccount when checking axioms 

consistency [22]. Inconsistent axioms must be considered 
as a fault in the specification and this case must be 
(possibly automatically) detected andeliminated [23, 
24].Even with consistent axioms, some (but not all) trap 
properties can be true: there is no test case that can satisfy 
the test predicate and the constraints. In this case define the 
test predicate as infeasible. 
DEFINITION 6. Let Tpred a test predicate, M the 
specification and Cj the conjunction of all the axioms. If the 
axioms are consistent and the trap property for Tpred is true 

i.e. M^Cj⇒	Tpred, then Tpred is infeasible. If Tpred is the t-
wise test predicate p1 =v1 ^ p2 = v2 … pt=vt then this 
combination of assignments is infeasible. 
An infeasible combination of assignments represents a set 
of invalid test suites which contain such a combination are 
invalid. The proposed algorithm is able to detect an 
infeasible assignment since it can actually prove the trap 
property derived from it. In the bank mortgaging example 
consider M as loan_availed and Cj as Income < Required 
the implication that is repayable property becomes false 
and combination is clearly infeasible. Stated 

Mathematically M ^ Cj⇒	Tpred( Repayable = False). 
Note that this infeasible combination is not explicitly listed 
in the constraints. Infeasible combinations represent 
implicit constraints. So every time we add the test predicate 
toconjoint of test predicates there is a need to check the 
consistency by considering the axioms also. 
 

VIII. RESULTS AND DISCUSSION 
The proposed approach has been implemented in the 
ATGT. ATGT allows the tester to load an external file 
containing the user defined tests and goals [25, 26]. When 
the external file is loaded ATGT adds the user defined 
goals to set of test predicates to be covered. Then it adds 
the user defined tests and checks which Tpred are satisfied 
by these tests. The proposed approach is applied to the web 
based banking application with different domain sizes 
using the constrained covering array. The approach is used 
to benchmark the size of generated test suite and assess the 
different test generation strategies.  

 
TABLE 2 : TEST SUITE SIZE COMPARISON USING DIFFERENT ORDERING FOR UNCONSTRAINED MODELS 

Task Size 
No Collect Collect 

Time (Secs) 
Random Novelty Random Novelty AntiDiagonal 

CA1 33 12 11 11 15 15 9.7 
CA2 43 23 21 21 28 28 18.6 
CA3 53 36 34 31 43 45 28.1 
CA4 63 52 53 46 66 68 42.3 
CA5 73 73 71 63 81 91 48.0 

 
TABLE 3 : TEST SUITE SIZE COMPARISON USING DIFFERENT ORDERING FOR CONSTRAINED MODELS 

Task Size 
No Collect Collect 

Time (Secs) 
Random Novelty Random Novelty AntiDiagonal 

CCA1 33 9 9 9 9 9 1.8 
CCA2 43 17 18 17 17 18 4.7 
CCA3 53 27 29 30 26 29 7.6 
CCA4 63 41 41 41 38 44 11.2 
CCA5 73 59 58 54 52 67 14.2 
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The comparison of the test suite size using unconstrained 
model and constrained model is given the table 2 and table 
3. The results are worthwhile in terms of time and number 
of test suites. The Result chart shows the time difference 
for the generation of test suites for the unconstrained and 
constrained models. 

 
Figure 3: Test Suite Size and Time for Unconstrained Models 

 

 
Figure 4: Test Suite Size and Time for Constrained Models 

 
IX. CONCLUSION 

This paper presented the approach to t-way combinatorial 
test suite generation with support of constraints based on 
the predicates. The IG-t-CCIT has the ability to express 
complex constraints on the input domain in a compact and 
effective syntax as formal predicate expressions and 
axioms and able to generate optimized test suites along 
with user specific test goals. The constraint handling is 
done by predicates without having to remodel or expansion. 
It supports enumerative and Boolean types. 
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